Turning terminally differentiated skeletal muscle cells into regenerative progenitors
نویسندگان
چکیده
The ability to repeatedly regenerate limbs during the entire lifespan of an animal is restricted to certain salamander species among vertebrates. This ability involves dedifferentiation of post-mitotic cells into progenitors that in turn form new structures. A long-term enigma has been how injury leads to dedifferentiation. Here we show that skeletal muscle dedifferentiation during newt limb regeneration depends on a programmed cell death response by myofibres. We find that programmed cell death-induced muscle fragmentation produces a population of 'undead' intermediate cells, which have the capacity to resume proliferation and contribute to muscle regeneration. We demonstrate the derivation of proliferating progeny from differentiated, multinucleated muscle cells by first inducing and subsequently intercepting a programmed cell death response. We conclude that cell survival may be manifested by the production of a dedifferentiated cell with broader potential and that the diversion of a programmed cell death response is an instrument to achieve dedifferentiation.
منابع مشابه
Efficient Generation of iPS Cells from Skeletal Muscle Stem Cells
Reprogramming of somatic cells into inducible pluripotent stem cells generally occurs at low efficiency, although what limits reprogramming of particular cell types is poorly understood. Recent data suggest that the differentiation status of the cell targeted for reprogramming may influence its susceptibility to reprogramming as well as the differentiation potential of the induced pluripotent s...
متن کاملDirect reprogramming into desired cell types by defined factors.
In the field of developmental biology, the concept that cells, once terminally differentiated, are fixed in their cell fate was long believed to be true. However, Dr. Gurdon and colleagues challenged this fundamental doctrine and demonstrated that cellular reprogramming and cell fate conversion are possible by somatic nuclear transfer and cell fusion. The Weintraub laboratory discovered in the ...
متن کاملFetal Skeletal Muscle Progenitors Have Regenerative Capacity after Intramuscular Engraftment in Dystrophin Deficient Mice
Muscle satellite cells (SCs) are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this questio...
متن کاملRoles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle
Adult skeletal muscle possesses a remarkable regenerative ability that is dependent on satellite cells. However, skeletal muscle is replaced by fatty and fibrous connective tissue in several pathological conditions. Fatty and fibrous connective tissue becomes a major cause of muscle weakness and leads to further impairment of muscle function. Because the occurrence of fatty and fibrous connecti...
متن کاملO(2) regulates skeletal muscle progenitor differentiation through phosphatidylinositol 3-kinase/AKT signaling.
Skeletal muscle stem/progenitor cells, which give rise to terminally differentiated muscle, represent potential therapies for skeletal muscle diseases. Delineating the factors regulating these precursors will facilitate their reliable application in human muscle repair. During embryonic development and adult regeneration, skeletal muscle progenitors reside in low-O(2) environments before local ...
متن کامل